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Neutrally buoyant particles in low-Reynolds-number pressure-driven suspension flows
migrate from regions of high to low shear, and this migration is a strong function of the
local concentration. When the particle density differs from that of the suspending fluid,
buoyancy forces also affect particle migration. It is the ratio between the buoyancy and
viscous forces, as quantified by a dimensionless buoyancy number, which determines
the phase distribution of the suspension once the flow is fully developed. Although
several experiments have verified shear-induced particle migration in neutrally
buoyant suspensions, data for particle migration when buoyancy effects are important
are scarce. Electrical impedance tomography (EIT) is used here to non-invasively
measure particle concentration across a pipe arising from the low-Reynolds-number
flow of heavy conducting particles and light non-conducting particles in a viscous
suspending fluid. A range of buoyancy numbers was investigated by varying the
flow rate. In all of the experiments, a significant fraction of the particle phase was
observed to migrate towards the top or bottom of the pipe, depending on the relative
density of the particles. The amount of migration away from the centre of the
pipe increased with increasing magnitude of the buoyancy number. Furthermore,
observations of the phase distribution at several positions downstream of the inlet
indicate that these suspension flows become fully developed earlier than that observed
for neutrally buoyant particles. A scaling analysis for the prediction of the fully
developed length is presented, which predicts shorter lengths for higher buoyancy
numbers and is consistent with experimental observations. The experimental data
were compared to an isotropic suspension balance model, and it was found that
the particle phase distributions predicted by this model agree fairly well with the
experimental observations.

1. Introduction
Particles in highly viscous suspension flows fall in the Stokes regime, where inertial

effects are negligible. A unique property of these flows is the migration of particles
away from areas of high shear. This phenomenon was first observed indirectly by
Gadala-Maria & Acrivos (1980), where they noted a long-term decrease in the
viscosity of a suspension in a Couette rheometer. They attributed this reduction in
viscosity to the migration of particles to the low shear zone in the reservoir of the
rheometer. Further studies by Leighton & Acrivos (1987) noted a short-term viscosity
increase in the initial shearing of the Couette rheometer, which they attributed
to the migration of particles across the gap of the rheometer. Furthermore, they
demonstrated that this phenomenon was shear-induced particle migration, and they
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used their studies to evaluate diffusion coefficients, which scaled as the shear rate and
the square of the particle radius and was a strong function of concentration.

These studies prompted further investigations of shear-induced particle migration in
other flow configurations. Several investigators have studied pressure-driven flows of
neutrally buoyant particles in channels and pipes. Hampton et al. (1997) used nuclear
magnetic resonance imaging (NMRI) to determine both velocity and concentration
profiles of a pressure-driven pipe flow. They varied several experimental parameters
including the bulk volume fraction (0.10 � φbulk � 0.50) and the ratio of the radius
of the particle a, to the radius of the pipe R (a/R =0.0256 and a/R =0.0625). For
the largest a/R ratio with a bulk concentration of 10%, they observed no particle
migration. However, larger concentrations showed significant particle migration to the
centre of the pipe, with the profile becoming blunter with increasing concentration.
Using laser-Doppler anemometry, Koh, Hookham & Leal (1994) measured the velocity
and concentration profiles in pressure-driven channel flows of suspensions of neutrally
buoyant particles. They observed particle migration for various concentrations
(φbulk = 0.10, 0.20 and 0.30) at several different ratios of particle radii to channel
width. Their experiments revealed migration of the neutrally buoyant particles to the
centre of the channel; however, some of their measurements may not have been at
lengths sufficient to achieve a fully developed flow. Lyon & Leal (1997a, b) performed
several experimental studies on neutrally buoyant particles in pressure-driven flows
for longer channels. First, they studied the flow of a nearly monodisperse suspension
of spheres using a modified laser-Doppler velocimetry (LDV) technique (1997a).
They studied systems with the ratio of channel height to particle radius (H/a) of
11 to 24 and bulk volume fractions ranging from 0.30 to 0.50. These experiments
revealed migration of particles to the centre of the channel, which increased with
increasing bulk volume fraction. Lyon & Leal (1998b) also investigated a bidisperse
suspension of neutrally buoyant particles with different radii using LDV. They found
that the particles segregated with a greater fraction of large particles in the centre
of the channel, and that this was more apparent at lower concentrations. Butler &
Bonnecaze (1999) used electrical impedance tomography (EIT) to non-invasively
image neutrally buoyant particles in a pressure-driven tube flow. They performed
experiments with a/R = 0.0064 and for bulk concentrations of 0.25 and 0.40. These
experiments revealed migration of the neutrally buoyant particles to the low-shear
zones in the centre of the pipe. Furthermore, this non-invasive imaging technique
produced results that closely matched the NMRI studies of Hampton et al. (1997).

Butler, Majors & Bonnecaze (1999) also performed NMRI studies of neutrally
buoyant particles in oscillatory pressure-driven flow. They noted that these particles
migrated to the centre of the pipe when the amplitude of oscillation was greater than
the radius of the particle. However, when the amplitude was of the same order as the
particle size, they observed particle migration to the walls.

Theoretical studies have focused around the development of two models: the
diffusion flux model (Leighton & Acrivos 1987; Phillips et al. 1992) and the suspension
balance model (Nott & Brady 1994). As the name implies, the diffusion flux model
describes particle migration as a diffusive local process. The suspension balance model
uses the equations of motion and appropriate constitutive equations to describe the
suspension and particle phases.

Leighton & Acrivos (1987) introduced the diffusion flux model to successfully
explain their observations of shear-induced particle migration in a Couette rheometer.
This model describes the migration of particles with a diffusion equation, where the
diffusion coefficient is proportional to the product of the shear rate and the square of
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the particle radius (D ∼ γ̇ a2) and is a strong function of the particle concentration.
This hydrodynamic diffusion arises due to the irreversible interaction among several
smooth particles or two rough particles. Phillips et al. (1992) expanded this diffusion-
flux model to pressure-driven flows. Based on the earlier studies of Leighton & Acrivos,
they incorporated two mechanisms to explain particle migration. One accounts for
particle concentration variation, where the rate of interactions of the particles is
proportional to the shear rate and volume fraction. Therefore, an area of higher
concentration will result in more hydrodynamic interactions, forcing the particle to
areas of lower concentration. A second mechanism identifies gradients in the viscosity
as a source of particle migration. When particles hydrodynamically collide in an area
of non-uniform viscosity, the centre of mass of the two-particle system is changed,
resulting in motion towards the lower viscosity (lower concentration). Phillips et al.
successfully incorporated these mechanisms into a diffusion equation coupled (through
the volume fraction dependency of the viscosity) with a momentum balance at low
Reynolds number to model shear-induced particle migration in pressure-driven pipe
flow.

One of the advantages of the diffusion flux model is its simplicity. Straightforward
modifications of the equations of motion and the introduction of a diffusion equation
are easily handled for many flows. This model has been applied with success to
neutrally buoyant suspensions (for example see, Koh et al. 1994; Hampton et al.
1997; Subia et al. 1998; Butler & Bonnecaze 1999) and polydisperse (different radii)
suspensions (Shauly, Wachs & Nir 1998). However, one disadvantage to this model
is the local nature of the equations. There is a failure of the model at zero shear rate,
resulting in a cusp with a value of maximum packing (for instance, the centreline in
pressure-driven channel or tube flows). Furthermore, the diffusion flux model fails to
predict particle migration accurately in curvilinear flows.

Jenkins & McTigue (1990) introduced a model for concentrated suspension flows
for both the inertial and viscous regime. This model proposed that particle fluctuations
play an important role in the transport of particles in a viscous flow. They introduced
a model that describes the process in terms of the momentum due to the suspension
phase and that occurring due to the fluctuations of the particles. They incorporated a
suspension temperature and a balance equation for the energy to complete the model.
Further, they introduced constitutive equations for the particle pressure, viscosity,
heat flux and dissipation rate. Wallis (1969) had previously noted the importance of
the additional pressure due to the particle phase in his description of one-dimensional
two-phase flows.

Nott & Brady (1994) investigated neutrally buoyant particles in pressure-driven
channel flow using Stokesian dynamics simulations. These simulations revealed
that irreversible particle migration is present even without the mechanism of
surface roughness. These Stokesian dynamics simulations revealed another important
mechanism for particle migration: the variation in normal stresses. Nott & Brady used
the insights from their simulations to introduce a macroscopic model similar to that
proposed by Jenkins & McTigue to predict particle migration. This suspension balance
model consists of volume-averaged continuity and equations of motion for the particle
and suspension phases. Furthermore, constitutive equations are introduced for the
stress of the suspension and particle phases. To eliminate the local description found
in the diffusion flux model, Nott & Brady introduced the suspension temperature,
which is a measure of the fluctuational velocities of the particles. They applied this
model to a pressure-driven channel flow of monodisperse neutrally buoyant particles
and found good agreement with the results of the Stokesian dynamics simulations.
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Additionally, Nott & Brady (1994) have shown that the diffusion flux model can be
obtained as a limiting case of the suspension balance model.

The suspension balance model has been successfully compared to several
experimental studies. For instance, experiments of monodisperse neutrally buoyant
suspensions in channel flow by Lyon & Leal (1998a) compared very favourably
with the results predicted by the suspension balance model. Furthermore, Lyon &
Leal (1998b) compared the results of their bidisperse (different radii) suspension
experiments with the suspension balance model based on an average particle size and
found reasonable agreement.

Nott & Brady (1994) expressed the stress attributed to the particle phase in terms of
an isotropic particle pressure, the deviatoric shear stresses and a function of the normal
stress differences. Their study focused on a rectilinear flow where the normal stress
differences are not important. Morris & Boulay (1999) further investigated normal
stress differences in curvilinear flows. Experimentally, little or no particle migration
was observed in parallel-plate torsional flows; however, both models (the suspension
balance model without normal stress differences or the diffusion flux model) predicted
particle migration. Likewise, these models predicted no migration in cone-and-plate
torsional flows, but experimental observations noted migration radially outward. To
account for these phenomena in curvilinear flow, Morris & Boulay introduced a
normal stress viscosity and a material tensor, which describes the anisotropy of the
normal stresses, into the particle contribution to stress. This modification of the
suspension balance model successfully captured the trends observed experimentally
for parallel-plate torsional flows and cone-and-plate torsional flows. Fang et al. (2002)
introduced a similar modification for the incorporation of normal stress differences
in curvilinear flows. Furthermore, they successfully extended this formulation to the
diffusion flux model by modifying the flux terms and the constitutive equation for the
stress with a tensor that describes the anisotropy of the normal stresses.

In many suspensions, the density of the particles differs from that of the sus-
pending fluid. To account for this additional effect, Morris & Brady (1998) incor-
porated buoyancy forces into the suspension balance model. This additional force is
represented in terms of a buoyancy number, which is a measure of the ratio of the
buoyancy forces to the viscous forces. For pressure-driven suspension flow in a pipe,
this buoyancy number Nb may be expressed in terms of the average axial suspension
velocity as

Nb =
2(ρp − ρf )gR2

9ηU
, (1.1)

where ρp is the density of the particles, ρf is the density of the fluid, g is the
acceleration due to gravity, R is the radius of the pipe, η is the viscosity and U is the
average axial velocity.

Morris & Brady (1998) applied their modified suspension balance equations to
pressure-driven channel flow and found good agreement with Stokesian dynamics
simulations. They noted an increase in the deposition of the heavy particles for
increasing buoyancy numbers, and they observed a dense fluid over light fluid for
smaller-magnitude buoyancy numbers. Carpen & Brady (2002) have shown that
this adverse density gradient is unstable for gravity-driven flows of non-neutrally
buoyant particles. Furthermore, they found that as the density difference between the
particles and the suspending fluid increases, the instability becomes more pronounced.
However, they noted that the growth rate was small and a very long channel would
be required to observe an adverse density gradient.
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There are very few experimental data for low-Reynolds-number pressure-driven
suspension flows with buoyant particles. One notable exception is a study performed
by Altobelli, Givler & Fukushima (1991). They used NMRI to obtain both velocity
and concentration profiles for systems of heavy particles at low Reynolds numbers.
They studied systems with a particle volume fraction up to 39%. Although they
were able to obtain excellent velocity profiles, the concentration profiles were only
qualitative in nature, and they had difficulty resolving the concentration of particles
near the surface of the pipe.

The purpose of this study is to make quantitative measurements of the concentration
profiles of suspensions, where buoyancy forces are important. Here, the concentration
profiles of heavy and light particles in pressure-driven pipe flow are determined using
non-invasive EIT imaging. All of the experiments are performed at low pipe-Reynolds
numbers, and vanishing particle-Reynolds numbers. In addition, the experimental
results are compared to the local isotropic suspension balance model introduced by
Nott & Brady (1994), hereinafter referred to as ‘the model’.

The outline of the remainder of this paper is as follows. In § 2, EIT imaging is
discussed. Specifically, the general theory of EIT measurements and image reconstruc-
tion is introduced. Then, in § 3, the experimental procedure, including the suspension
preparation, fluid property measurements and experimental measurements are
explained. In § 4, the model that is used for comparison to the experimental results
is introduced. In § 5, measurements of the pressure along the pipe are presented. The
pressure is observed to have a minimum before becoming fully developed, and a simple
model is presented to explain this observation. In § 6, the measured migration for
the suspensions is presented, along with a comparison to the theoretical predictions
of the isotropic suspension balance model. In § 7, a scaling argument is presented to
predict the length to obtain a fully developed concentration profile for pressure-driven
flows of viscous suspensions with buoyant particles. Concluding remarks are presented
in § 8.

2. Electrical impedance tomography imaging
EIT is a non-invasive imaging technique with many applications in the medical

field and industrial processes (Cheney, Isaacson & Newell 1999; Dickin & Wang
1996). EIT has become a popular research and diagnostic tool for both medical and
industrial applications because of the low cost of equipment and the non-invasive
nature of this imaging procedure. For example, EIT has been used to successfully
diagnose lung abnormalities, such as blood clots (Cheney et al. 1999). EIT has also
been applied to several industrial applications. For example, Dickin & Wang (1996)
successfully used EIT to monitor mixing tanks at a pilot plant scale. Additionally,
Butler & Bonnecaze (1999) used EIT to determine concentration profiles of neutrally
buoyant particles in a viscous pressure-driven pipe flow. Also, Etuke, Bonnecaze &
Butler (1999) investigated the use of EIT in monitoring pulp consistency.

2.1. EIT measurements

EIT imaging is based on the variation in potential fields due to the applied current
through a material with varying impedance. Figure 1 shows a common four-electrode
measurement configuration for EIT imaging. A potential field, which is determined
by the conductivity distribution in the imaging plane, is produced by introducing a
current through a series of electrodes surrounding the plane of interest. The resul-
ting potentials are measured at the electrodes surrounding the image plane. A
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Figure 1. Four-electrode (opposite) measuring protocol. Current (I ) is injected on flush-
mounted opposing electrodes and the resulting potential differences (V ) are measured on all
adjacent electrodes not used for current injection. The current pair is shifted to the next
pair of electrodes and potential measurements are obtained on the remaining electrodes. This
procedure is repeated until all possible independent measurements are obtained.

nonlinear inverse algorithm is used to transform these potential measurements into
the previously unknown conductivity field. Finally, the computed conductivity profiles
are transformed to concentration fields of the multiphase flows using established
correlations.

In this study, the Mark 2 (Mk.2) EIT data acquisition system (Etuke 1994) is used
to perform all measurements. This system is a true impedance analyser in that it
has the ability to perform electrical resistance tomography (ERT), electrical capaci-
tance tomography (ECT) or electromagnetic tomography (EMT) measurements, with
frequency ranging from 1 to 300 kHz. Other features of the Mk.2 include the ability
to perform voltage or current injection and the choice of opposite or adjacent mea-
surement protocols. As the name implies, current is injected through neighbouring
electrodes in the adjacent protocol. In the opposite protocol, current is injected through
opposing electrodes (figure 1). The resulting potential differences are measured on
adjacent electrodes that are not used for current injection. This results in slightly more
independent measurements for the adjacent protocol, but better quality measurements
with the opposite protocol. This is because the current is more uniformly distributed in
the opposite protocol, whereas the adjacent protocol produces a non-uniform current
density that is larger in magnitude near the injection electrodes. Hence, the adjacent
protocol is more sensitive to noise compared to the opposite protocol (Dickin &
Wang 1996).

2.2. Image reconstruction

Conductivity profiles are obtained by numerically solving the nonlinear inverse
problem, which is essentially the minimization of a square L2 norm. The inverse
problem is ill posed and results in an ill-conditioned matrix (Parker 1994). To address
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these problems, a regularization technique is employed. A mathematical statement of
the regularized inverse problem is given by

min 2χ(σ ) = ‖Wd · (dobs − dcalc)‖2
2 + λ‖Wm · (σ − σ r )‖2

2. (2.1)

The first L2 norm in (2.1) represents the minimization of the squared difference in
the measured (noisy) data dobs obtained from the Mk.2 system, and the calculated
potentials dcalc, which is determined with a pseudo-three-dimensional finite-element
(FE) program (see Appendix A for further information). The data-weighting
matrix Wd is a diagonal matrix consisting of the inverse of the squared potential
measurements, which gives the lowest-magnitude potentials more weight since these
measurements were found to be more accurate. The second L2 norm represents the
regularization of the inversion. Regularization ensures a sufficiently smooth solution
of the conductivity σ relative to some reference conductivity σ r . In this study the
model-weighting matrix Wm is either the identity matrix, which gives the solution
that varies minimally from the reference conductivity, or the difference matrix (a
simple representation of the first derivative), which results in the smoothest solution
with respect to the reference conductivity. The parameter λ is a positive numerically
determined coefficient, which is optimized in such a way as to prevent instability
(the larger λ, the more heavily weighted is the second L2 norm). Minimization of
(2.1) results in an equation for the update in the conductivity profile. A numerical
algorithm is implemented to determine the conductivity profile with the smallest L2

error. The details of this procedure are outlined in Appendix B.
The inverse algorithm was verified by reconstructing synthetically produced

potential measurements. The conductivity profile was chosen to be qualitatively
representative of a system of heavy conducting particles. The corresponding synthetic
potential measurements were obtained using the pseudo-three-dimensional forward
FE simulation. Five per cent maximum Gaussian noise (average noise of 0.98%)
and 10% maximum Gaussian noise (average noise of 1.94%) were added to the
potential measurements. The maximum pointwise error for the conductivity in the
reconstructed image was practically the same as the maximum Gaussian noise in both
cases. Analysis of potential measurements for a uniformly conducting fluid indicates
these measurements have an average error of 0.03% (Butler & Bonnecaze 1999).
Further, the error in the reconstructed conductivity fields in the experiments was
less than 5%. To further test the robustness and accuracy of the inverse procedure,
several reconstructed experimental conductivity profiles were contaminated with 5%
maximum random Gaussian noise. These noisy conductivity fields were used to
generated synthetic potential measurements, which were inverted to produce new
conductivity profiles. The absolute difference between the new and the original
pointwise conductivities was also about 5% (see Norman 2004). These tests produced
confidence in the robustness and accuracy of the inversion algorithm.

The forward problem is computed on a finite-element grid consisting of 2097 nodes
and 1016 triangular elements (consisting of 6 nodes per element). With 32 electrodes,
the maximum number of independent measurements for the opposite protocol is
448 (Butler & Bonnecaze 1999). However, the symmetry of this system reduces
the maximum number to 224 independent measurements. Although the resolution
increased with the number of elements used in the reconstruction algorithm, the com-
putational time also increases with the number of elements. To address the balance
of time and resolution, a maximum of 128 elements were used in the inverse problem.
Each element represents a constant conductivity zone and, therefore, one independent
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Figure 2. Schematic of the flow loop used for the experiments. A Moyno progressing cavity
pump is used to create a pressure-driven flow through 2.04 cm i.d. pipe. A static mixer just
downstream of the pump exit ensures an initially uniform distribution of the particles. Four
sensors are shown, along with the Mk.2 system for measurement and a computer interface for
data acquisition and manipulation. The total length of the flow loop is approximately 17m.

measurement. All of the results in this paper are presented for a 32-electrode opposite-
measurement protocol with 128 conductivity zones.

The inversion technique results in the unknown conductivity field, and the
concentration profile is determined from one of the many well-known correlations
relating particle concentration and the electrical properties of the fluid and particles.
For the heavy conducting suspensions, the simplified Clausius–Mossotti correlation
(Doyle 1977) was used to determine the concentration φ(x) profile, which is given by

σ (x)

σs

=

(
2 + 2φ(x)

2 − φ(x)

)(
2 + φ(x)

2 − 2φ(x)

)
, (2.2)

where σs is the conductivity of the suspending fluid and x is a point in the domain.
The non-conducting light particles required a slightly more complicated correlation to
achieve the desired accuracy. A correlation developed by Meredith & Tobias (1961)
was used for this conversion, where φ(x) is related to σ (x) by

φ(x) =
24 − [62 + 448(σ (x)/σs) + 64(σ (x)/σs)

2]1/2

2[8 + (σ (x)/σs)]
. (2.3)

3. Experimental procedure
To measure buoyancy effects in low-Reynolds-number pressure-driven pipe flow,

two different suspensions were pumped through the flow system illustrated in figure 2.
The first suspension consisted of a highly viscous suspending fluid with heavy
conducting spherical particles. Additionally, a second suspension consisting of light
non-conducting particles was prepared and studied.

The flow system was equipped with three (light-particle suspension) or four (heavy-
particle suspension) inline sensors consisting of 32 electrodes each. The electrodes were
stainless steel, rectangular in shape and each have an area of 2 mm2. After degassing
to remove the entrained air, the suspension was poured into the reservoir, where it
entered the Moyno progressing cavity pump. This pump was precisely controlled to
ensure constant volumetric flow rates. The suspension was pumped through clear
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a ρp ρf η σ

Suspended particles (cm) (g cm−3) (g cm−3) (cP) (S m−1) φ

Conduct-O-Fil
R© S3000-S 0.003 2.50 1.08 586 0.031 0.20

Heavy conducting

Extendosphere
R© SL-150 0.011 0.725 1.10 1055 0.164 0.25

Light non-conducting

Table 1. The average radii of the particles a, the density of the particles ρp , the density of the
suspending fluid ρf , the viscosity of the suspending fluid η, the conductivity of the suspending
fluid σ , and the volume fraction of particles in the suspension φ.

PVC pipes with an inner diameter of 2.04 cm. A static mixer was placed near the
entrance to ensure an initially uniform distribution of the suspension. The sensor
arrays were placed at predetermined lengths, to obtain measurements at different
stages of progression towards fully developed flow. A pressure gauge was used to
measure the pressure at several positions along the flow loop. The Mk.2 produced the
current and measured the resulting potentials, which were stored and manipulated in
a computer.

3.1. Suspension preparation

The suspending fluid consisted of UCON
R©

lubricant 75-H-90000 to which an aqueous
sodium iodide (NaI) solution was added to produce the desired viscosity, density and
conductivity. An ERTCO hydrometer was used to measure the density, and a Cannon-
Fenske viscometer was used to measure the viscosity. All of these measurements were
conducted at room temperature and repeated numerous times to ensure accuracy.
The particles were slowly added to the suspending fluid under vigorous stirring and
then mixed for a minimum of twelve hours at a moderate speed. The suspension was
then placed under vacuum to remove any entrained air. This was a long procedure,
and since the particle density varied from that of the suspending fluid, separation of
the phases always occurred. Therefore, to obtain an initially uniform distribution of
particles, the suspensions were subsequently resuspended by mixing at very low speeds
to ensure no air entrainment. Table 1 summarizes the composition and properties of
each suspension.

The suspending fluid for the heavy particles consisted of 45% by volume of UCON
R©

lubricant with an aqueous solution of 10 mg of NaI per cm3 of distilled water. The
conductivity of the suspending fluid was measured using Corning CheckMate 90
meter. The particles were silver-coated glass spheres (Conduct-O-Fil

R©
S-3000S, by

Potter’s Industries) with a radius of approximately 0.003 cm. The suspending fluid
for the light non-conducting particles was prepared as 50% by volume of UCON

R©

lubricant with an aqueous solution of 25 mg of NaI per cm3 of distilled water. These
light particles were hollow spheres consisting mainly of Silica (Extendosphere

R©
, SL-

150, by PQ Corporation) and were sieved to give an average radius of 0.011 cm.

3.2. Experimental conditions

Table 2 summarizes the volumetric flow rate, Q, the measured pressure gradient
determined from the last two pressure measurements, Gexp, the particle-Reynolds
number, the pipe-Reynolds number, the buoyancy number Nb = 2(ρp − ρf )gR2/9ηU

and an alternative buoyancy number N̂b =(ρp − ρf )g/G used for the numerical
analysis (see § 6 for further information on the theoretical relationship between Nb
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Q Gexp

Experiment (cm3 s−1) (g cm−2 s−2) Reparticle Repipe Nb N̂b N̂b(Gexp)

Heavy
1 37.1 1102 6.3 × 10−3 2.12 4.9 1.3 1.3
2 18.9 674 3.2 × 10−3 1.08 9.5 2.5 2.1
3 9.7 429 1.6 × 10−3 0.55 18.6 4.4 3.3

Light
4 10.8 1089 3.5 × 10−3 0.35 −2.4 −0.5 −0.6
5 5.4 798 1.8 × 10−3 0.18 −4.9 −1.0 −1.0
6 2.6 472 8.9 × 10−4 0.09 −10.1 −1.9 −1.8

Table 2. Summary of the experimental conditions. Where the average volumetric flow rate
is given by Q, the pressure gradient Gexp measured at the end of the pipeline, the particle-
Reynolds number Reparticle, the pipe-Reynolds number Repipe, the buoyancy number given in
terms of the average axial velocity (U ) Nb = 2(ρp − ρf )gR2/9ηU and buoyancy number given
in terms of the pressure gradient, N̂b = (ρp − ρf )g/G.

and N̂b). Additionally, the buoyancy number N̂b(Gexp), which is expressed in terms
of the pressure gradient given by Gexp, is displayed in table 2.

Three different volumetric flow rates were established for each suspension studied;
these correspond to the buoyancy numbers presented in table 2, where Nb is the
buoyancy number based on the average axial velocity, N̂b is the buoyancy number
used in the numerical analysis and N̂b(Gexp) is the buoyancy number based on the
measured pressure gradient furthest downstream of the inline mixer. The buoyancy
numbers N̂b(Gexp) and N̂b are not necessarily equal because of discrepancies between
theory and experiment, and the measured pressure gradient may not correspond to
fully developed flow, as discussed in § 5. The volumetric flow rate was determined
by averaging several measurements made with a graduated cylinder and a stopwatch
and are displayed in table 2 along with the corresponding Reynolds numbers and the
buoyancy numbers. The gauge pressure was measured at five points along the flow
system for each experiment using an Ashcroft test gauge with increments of 0.1 p.s.i.
The measured pressure and pressure gradients are discussed in detail in § 5.

3.3. Data measurements

The Mk.2 data acquisition system was used to obtain potential measurements at
various predetermined lengths along the flow loop illustrated in figure 2. Although
the Mk.2 has the ability to perform many measurement protocols, the current
injection, 32-electrode opposite-protocol measurement technique (figure 1) produced
the best reconstructed images (because the current is more uniformly distributed in the
opposite protocol and therefore less sensitive to noise). Therefore, this measurement
technique was used for all of the experiments. The sensor arrays were placed at four
specific lengths for the heavy-particle suspension and three locations for the light-
particle suspension. For the heavy particles, the first sensor was placed 5.5 m after the
inline mixer. The remaining sensors were placed at 10.9 m, 12.4 m and 14.4 m after
the inline mixer. The sensors for the light-particle suspension were placed at different
positions, since fully developed flow is obtained at a shorter distance (see § 6 for
further information on the fully developed length scale). These sensors were placed
at 3.9 m, 5.3 m and 9.8 m after the static inline mixer. At each of these positions, the
measurements were repeated a minimum of five times to ensure the precision of the
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collected potential measurements. These potential measurements were averaged and
manipulated as explained in Appendix C.

Once the Moyno pump was set to the desired volumetric flow rate, the suspensions
were allowed to flow until a steady volumetric flow and pressure distribution were
measured. Once the steady-state condition was established, the Mk.2 system was
attached to each sensor via 32 gold-plated connectors. The electrodes were connected
to the Mk.2 in such a way that ensures the position of the first measurement was
known, which was important since the inverse algorithm requires the first electrode
position to be defined. The frequency was set at 2 kHz for every measurement and a
typical current of 1 mA was injected across opposing electrodes. The electrophoretic
velocity produced by this current was three orders of magnitude less than the corrected
Stokes velocity. The 32-electrode opposite-protocol measurement technique resulted
in 448 measurements (not all of which are independent), which were obtained within
5 s at 2 kHz. Every measurement was repeated a minimum of five times to ensure
precision and the average values were used in the numerical analysis.

4. Suspension balance model
As discussed in § 1, theoretical studies on low-Reynolds-number particle migration

have focused around the development of two models: the diffusion flux model and
the suspension balance model. The suspension balance model has been successfully
applied to several suspension flows, including pressure-driven channel flow with
buoyancy effects. For this reason, the suspension balance model is used for comparison
to experimental results. Furthermore, the model introduced by Nott & Brady
(1994) is investigated in this study. The suspension balance model consists of the
averaged equations of motion for the suspension and particle phases and appropriate
constitutive equations.

4.1. Isotropic suspension balance model

In this study, a fully developed steady-state flow that includes the in-plane velocities
is considered. The non-dimensional suspension-phase equations are given by

∇ · 〈u〉 =0, (4.1a)

−∇P − ∇ Π + 2 ∇ · ηs〈e〉 + N̂bφey = 0. (4.1b)

Here, φ is the volume fraction of particles, ηs is the suspension viscosity given by
(4.1d). The parameter Π is the particle pressure (given in (4.1c)) and P is the fluid
pressure, which are non-dimensionalized by GR, where G is the axial pressure gradient
and R is the radius of the pipe. Further, u is the velocity of the suspension phase,
which is non-dimensionalized by GR2/η, where η is the viscosity of the suspending
fluid. All lengths are scaled by the radius of the pipe R, and the buoyancy number
is N̂b = (ρp − ρf )g/G. The volume-averaged bulk rate-of-strain tensor is denoted by
〈e〉. Note that it is easier to solve this multiphase flow for fixed N̂b rather than for
fixed Nb because the latter requires an iterative solution to determine the pressure
gradient that corresponds to the desired averaged velocity. Therefore, Nb is computed
as a function of N̂b (figure 11) and used to map the experimental conditions (fixed
Nb) into the equivalent numerical condition (fixed N̂b).

Experimental studies by Zarraga, Hill & Leighton (1999) suggest the particle
pressure is best represented by the correlation

Π = 1.89φ3

(
1 − φ

φm

)−3

γ̇ , (4.1c)



12 J. T. Norman, H. V. Nayak and R. T. Bonnecaze

where γ̇ = [〈e〉: 〈e〉]1/2 is the shear rate, which is non-dimensionalized by GR/η.
Further, they correlated the suspensions viscosity as

ηs = e−2.34φ

(
1 − φ

φm

)−3

. (4.1d)

Sierou & Brady (2002) have found that these expressions for the particle constitutive
equations are in good quantitative agreement with the predictions of Stokesian
dynamics simulations.

The non-dimensional particle-phase equations are given by

∇ · φ〈u〉p = 0, (4.2a)

−∇Π − 9φ

2f (φ)

(
R

a

)2

(〈u〉p − 〈u〉) + 2 ∇ · ηp〈e〉 + N̂bφey =0. (4.2b)

Here, f (φ) = (1 − φ)(1 − φ/φm)1.82 is the hindrance function (it should be noted that
other hindered settling functions, such as the Richardson–Zaki correlations were
used; however, owing to the small ratio of particle to pipe radius and the resulting
no-slip between phases, the form of the correlation had little or no effect in the
numerical analysis), R is the radius of the pipe and a is the radius of the particle.
These equations were non-dimensionalized using the same characteristic quantities
used for the suspension phase.

This form of the local isotropic suspension balance equations allows the phase
slip (i.e. wp − w) to be explicitly calculated, which was found to be practically zero.
Furthermore, the velocity components are allowed to vary in the plane of interest,
allowing for recirculation. Additionally, the volume fraction of particles is constrained
such that the integral of the concentration profile over the domain is equal to the bulk
volume fraction. In these experiments, the measured parameters are the suspension
flow rate at the exit of the flow loop and the areal averaged particle concentrations
obtained from integrating the concentration profiles obtained from the EIT. Therefore,
these constraints are used in the numerical model. In fact, the axial flux or mixing cup
average volume fraction at the inlet is not measured, which in a closed flow loop will
be different from the initial mixture in the tank once steady state has been achieved.

4.2. Numerical analysis

These equations are solved simultaneously, using a least-squares finite-element method
(LSFEM) numerical algorithm (Nayak 2001; Nayak & Carey 2003). The standard
LSFEM is based on constructing a global error functional involving the square L2

norm of the residuals of the differential equations governing the flow. The objective
is to determine the dependent variables such that the global error functional is
minimized. When the field or dependent variables satisfy the differential equations,
the local and the global residuals and, hence, the global error functional are minimized.
The local and global residuals also provide an indication as to how well the individual
governing equations have been satisfied over each element of the FE domain and
over the whole computational domain. The application of the least-squares approach
results in strongly coupled nonlinear algebraic equations for the nodal variables. This
system of equations is solved iteratively. Furthermore, this nonlinear minimization
problem is solved by incorporating a line search with the classical Newtonian method
at each iteration step, and this procedure does not require the use of preconditioners.

The principal objective of any nonlinear iteration method is to reduce the discrete
residuals to a value of zero (within the machine tolerance). In all of the simulations,
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Figure 3. Numerical solution of the isotropic suspension balance equations. These results re-
present a suspension of heavy-particles with the properties represented in table 2 for a
buoyancy number (according to (1.1)) of 9.5. (a) Volume fraction distribution; (b) non-
dimensional axial velocity distribution; (c) non-dimensional pressure distribution; (d) vector
representation of the in-plane velocity distribution.

Newton’s iteration is assumed to be converged when the global error functional is less
than or equal to the tolerance value of 10−4. Computations of these suspension-flow
equations confirm that this tolerance limit is adequate in order to obtain high-quality
numerical solutions. A more formal mathematical treatment and detailed discussion
about LSFEM are given in Nayak (2001) and Nayak & Carey (2003). For this
analysis, the computational domain is a circle with a non-dimensional radius of one.
This mesh is composed of 128 p-version 9-noded quadrilateral elements. Furthermore,
the no-slip condition is imposed on the boundary of the domain. For both negative
and positive buoyancy numbers, the numerical simulations have been performed over
a wide range of buoyancy numbers in small increments. In all computations, the
solutions for a higher flow rate and, hence, a lower buoyancy number, is used as the
initial guess for the flow simulation at the next higher buoyancy number. The solution
for the neutrally buoyant flow case was used as the initial guess for the first non-zero
buoyancy number.

4.3. Numerical results

Figure 3 is a typical example of the results obtained from the numerical analysis of the
suspension balance equations, which were performed at the intermediate buoyancy
number (Nb = 9.5) for the heavy-particle suspension. Figure 3(a) depicts the particle
concentration profile and figure 3(b) represents the axial velocity distribution for a
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fully developed steady-state flow. Furthermore, figure 3(c) is the pressure distribution
and figure 3(d) is a vector plot of the in-plane velocities; it is important to note
that the in-plane velocities are two orders of magnitude smaller than the axial
velocity.

As seen in figure 3(a), buoyancy forces strongly affect the distribution of the
particles, with the heavy particles accumulating at the bottom of the pipe. Figure 3(b)
depicts the axial velocity profile for this system and reveals the effect of particle
deposition on the velocity distribution. The maximum velocity occurs above the centre
of pipe because of the higher concentration of particles and hence greater viscosity
at the bottom. Figure 3(c) shows the pressure distribution for this system, revealing
that the pressure varies in the cross-sectional plane and indicates that this parameter
should be included in the numerical analysis. Figure 3(d) is a vector representation
of the in-plane velocities. This figure shows a clear recirculation pattern similar to
that found by Zhang & Acrivos (1994). Furthermore, this recirculation results in a
qualitative and quantitative change in the concentration distribution. Specifically, the
recirculation affects the resuspension of the particles and it results in a concentration
profile that exhibits curvature, such as that seen in figure 3(a). When the in-plane
velocities are assumed to be zero and are not included in the numerical simulation,
the resulting concentration profiles show almost no dependency in the horizontal
direction.

5. Pressure measurements
Measurements of the pressure along the pipe give important insight into the

development of the suspension flow and may be used as an indicator of fully
developed flow. Figure 4 shows the gauge pressure (g cm−1 s−2) at various positions
in the flow loop downstream of the inline mixer. The pressure gradient is obtained
from the data presented in figure 4 using second-order finite differencing.

The pressure gradient decreases from the initially well-mixed suspension to a
minimum that occurs approximately halfway through the pipeline (figure 5). After
this point, the pressure begins to increase. For the heavy particles (figure 5a), the
pressure gradient continues to increase to the end of the pipeline. For the light
particles, figure 5(b) suggests an approach towards plateaux in the pressure gradients,
which would indicate a fully developed flow has been established.

The development of the pressure gradient can be understood by considering a
simple problem. Consider a pressure-driven flow between two flat plates, separated
by a distance H , as illustrated in figure 6.

This channel flow has been separated into two zones. The upper zone with a height
of αH represents a section of the flow that has a lower concentration of particles φ1,
than the lower zone of the flow with a concentration of φ2. The average concentration
of particles in the suspension, φb, is assumed to be fixed and is given by

φ1α + φ2(1 − α) = φb, (5.1)

The flow is a simple pressure-driven channel flow and the momentum equations are

∂

∂y

[
η1(φ1)

∂V1

∂y

]
= −G, (5.2a)

∂

∂y

[
η2(φ2)

∂V2

∂y

]
= −G, (5.2b)
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Figure 4. Pressure measurements downstream of the static inline mixer. (a) Pressure for the
heavy, silver particle suspension; (b) pressure for the light, PMMA particle suspension.

where V1 is the velocity in the upper zone, V2 is the velocity in the lower zone and
y is the vertical direction. Additionally, φ1 is the volume fraction of particle in the
upper zone with a viscosity η1(φ1), and φ2 is the volume fraction in the lower zone
with a viscosity of η2(φ2). Applying the usual no-slip conditions and continuity of
the stress boundary conditions, the pressure gradient is related to the average flow
rate by

G

Gwm

=
η1η2H

3

2ηb(η2A + η1B)
, (5.3a)

where

A =
3

2

{
H [(2α − α2) + β − β(2α − α2)]

α + β(1 − α)

}
(H − αH )2 − (H − αH )3, (5.3b)
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Figure 5. Pressure gradient measurements downstream of the static inline mixer. (a) The
pressure gradient for the heavy, silver particle suspension; (b) the pressure gradient for the
light, PMMA particle suspension.

B = (H − αH )3 − H 3 + 3αH 3

+
2α − α2 + β + β(2α − α2)

α + β(1 − α)

{
3H (H 2 − (H − αH )2)

2
− 9α3H 3

}
. (5.3c)

Here, β = η1/η2 and G = −∂P/∂x, and the viscosity is volume-fraction dependent and
given by ηi = 1/[1 − (φi/φmax)]

2, where φmax = 0.63. Also, Gwm is the pressure gradient
for a well-mixed suspension of particles with a bulk volume fraction of φb.

It is instructive to view the pressure gradient as a function of the fractional size
of the top layer. Figure 7 presents data for the pressure gradient normalized by the
pressure gradient for a well-mixed suspension of equivalent properties.

This figure reveals that the pressure gradient required to maintain a constant
volumetric flow rate is lower for smaller heights and lower concentration of particles
in this area. For a flowing suspension of heavy particles, this implies that the pressure
gradient should initially drop and then will eventually rise to a new plateau value.
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Figure 6. Schematic of a fully developed unidirectional pressure-driven flow. The channel has
a height, H , where the upper section (αH ) contains a suspension of viscosity η1(φ1), and the
lower section (H− αH ) contains another suspension of viscosity η2(φ2).
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Figure 7. Pressure gradient (normalized by the pressure gradient for a well-mixed suspension)
required to maintain a constant volumetric flow rate as the height (αH ) of the top section
increases. Data for particle volume fraction of 0.05, 0.10 and 0.20 in the top section, with a
bulk volume fraction of 0.30.

Figure 8 is a comparison of the pressure gradients measured furthest downstream
and the theoretical pressure gradient predicted from the isotropic suspension balance
model. The experimental and theoretical pressure gradients for the light-particle
suspension match quite well. The experimentally observed pressure gradient for the
heavy-particle suspension is generally larger than the theoretical prediction. A small
change in the distribution of the particles may have significant impact on the pressure
gradient, which could account for the discrepancy in figure 8 between theory and
experiment for the suspensions of heavy particles.

6. Results
The results for the experiments discussed in § 3 are presented in this section.

All of the experiments were modelled using the local isotropic suspension balance
equations presented in § 4, and these are compared to the experimental observations.
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Figure 8. Comparison of the experimental fully developed pressure gradients (G) and the
predictions of the isotropic suspension balance model at equivalent volumetric flow rates (Q).
The circular symbols represent the light-particle experimental data and the square symbols
represent the heavy-particle suspension. The solid lines indicate the theoretical predictions.

Additionally, our experimental results are compared with the previous studies of
Altobelli et al. (1991). Since the inverse problem results in a discrete number of
conductivities that are associated with the elements of the FE problem (conductivities
are assumed constant in each element), the actual data take the form of discrete
conductivity zones. An alternative method of presenting the data is in the form
of contour plots. The contour plots are formed by associating the value of the
conductivity within each element to the corresponding nodes. However, the boundaries
of the elements contain three overlapping nodes. In these cases, simple averaging is
used to determine the values on the boundaries. In this section, the data will be
presented in one of two ways, either as a contour line plot or, if clearer, a colour
contour plot.

6.1. Negatively buoyant system

The behaviour of the negatively buoyant system of heavy, conducting particles is
discussed in this section. Contour plots are presented for concentration profiles at
various stages towards the fully developed state. Additionally, the data are compared
to the prediction of the model presented in § 4.

At a fully developed steady state, the concentration profile is expected to be
symmetric about the vertical axis, and the experimental data confirms this assumption.
Figure 9 presents the development of concentration profiles as the flow approaches
the fully developed state for Nb =18.6, the largest magnitude buoyancy number
investigated. The potential measurements were obtained at four inline sensors placed
at 5.5 m, 10.9 m, 12.4 m and 14.4 m after the inline mixer. This figure reveals an
increase in particle deposition along the length of the flow system. By 5.5 m, there is
already a significant accumulation of particles near the bottom of the pipe. Further
down the pipe, at 10.9 m, a depletion zone near the top of the pipe is visible. The
measurement furthest downstream (14.4 m) reveals a large deposition of particles at
the bottom, a depletion zone at the top and nearly uniform distribution in the centre
of the pipe. Although the pressure gradient did not seem to reach a constant value far
downstream, the small differences between the particle concentration fields obtained
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Figure 9. Contour plots of the concentration profile for a mixed suspension of bulk particle
fraction, φb = 0.20 and a buoyancy number, Nb = 18.6 at four locations downstream of the
inline mixer. The average concentration, φavg , based on the integration of the contours is shown
in parentheses. (a) 5.5m (0.196); (b) 10.9m (0.215); (c) 12.4m (0.212); (d) 14.4m (0.207).

at 12.4 m and 14.4 m indicate that the suspension flow is nearly fully developed.
Further, it is important to note that the average concentrations determined from the
profiles are well within 10% of the actual bulk fraction of 0.20.

Figure 10 presents the concentration profiles at 14.4 m downstream of the inline
mixer for increasing buoyancy numbers. For the two larger values of Nb, there is little
variation between the concentration profiles obtained at the two furthest downstream
sensors, and hence it appears these suspension flows are nearly fully developed.
However, this is not the case for the lowest buoyancy number in figure 10(a), and so
this suspension may not be fully developed.

As the buoyancy number becomes larger, the deposition of particles becomes
greater, or conversely as the buoyancy number becomes smaller, there is greater
particle migration toward the central region of the pipe. As expected, there is a
larger concentration of particles observed at the bottom of the pipe as the buoyancy
number increases. The lowest buoyancy number reveals less deposition of the particles
and a more uniform concentration of particles near the centre of the flow owing to
shear-induced migration.
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Figure 10. For caption see facing page.
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Figure 11. Theoretical correlation for the buoyancy number based on the average axial
velocity, Nb , and the buoyancy number based on the pressure gradient, N̂b . The negative
buoyancy numbers represent a suspension with a bulk volume fraction of 0.25 and the positive
buoyancy numbers represent a suspension with a bulk volume fraction of 0.20.

One of the goals of this study was to determine if the suspension balance model
qualitatively and quantitatively agreed with the concentration profiles obtained from
EIT imaging. Therefore, the experimental results are compared with the predictions
of the local isotropic version of the suspension balance model presented in § 4.
The natural buoyancy number for the numerical analysis is N̂b = (ρp − ρg)g/G but
Nb = 2(ρp − ρf )gR2/9ηU is more easily calculated for the experiments using the
average velocity. By requiring equivalent volumetric flow rates, the two buoyancy
numbers are related as shown in figure 11. This figure was used to estimate N̂b for
the numerical simulations based on the experimental values of Nb.

Figure 12 represents the experimental volume fraction distributions compared to
the prediction of the isotropic suspension balance model. All of the experimental data
qualitatively match the prediction of this suspension model. Further, the suspension
balance model and the experimental results predict similar particle concentrations at
the depletion and accumulation zones at the top and bottom of the pipe, respectively.
In addition, the theoretical and experimental images show similar curvatures in the
concentration profiles. The largest variation in the experimental and theoretical data
occurs at the centre of the pipe. The experimental data indicate a larger area of
uniform particle distribution in the centre of the pipe, which varies minimally around
the bulk concentration value. This portion of the imaging area is less sensitive to
changes in conductivity (see Norman 2004), which may account for some of the
uniformity of concentration found in the EIT images.

A significant difference in theoretical and experimental results is found at the lowest
buoyancy number (Nb = 4.9). Although the experimental data and the numerical
simulation predict reasonably similar results for the highest and lowest concentration,
the theoretical result shows larger depletion and accumulation zones and more
variation in the centre of the pipe, which may be partially attributed to the imaging

Figure 10. Contour plots of the concentration profile at 14.4m downstream of the inline
mixer for φb = 0.20 and for all buoyancy numbers with the measured average concentration
shown parenthetically. (a) Nb =4.9 (0.208); (b) 9.5 (0.207); (c) 18.6 (0.207).
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Figure 12. Comparison of theoretical (left-hand column) and experimental results (right-hand
column) for the heavy particle suspensions. The experimentally obtained concentration profile
are at 14.4m downstream of the inline mixer for φb = 0.20. The theoretical results were obtained
using the local, isotropic suspension balance model. The data are presented for all experimental
buoyancy numbers. (a) Nb4.9, theoretical; (b) 4.9, experimental; (c) 9.5, theoretical; (d) 9.5,
experimental; (e) 18.6, theoretical; (f ) 18.6, experimental.
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technique. However, this concentration profile was obtained for a relatively large flow
rate, hence a small buoyancy number, and most probably has not travelled a sufficient
distance to achieve a fully developed flow (see § 7). Another significant discrepancy
occurs between the theoretical and experimental concentration profiles for Nb = 18.6.

Experimentally, there is a mounding of particles at the bottom of the pipe, contrary
to the theoretical prediction of flat concentration profiles. Although there is only a
small change in the concentration between 12.4 m and 14.4 m (figure 9), it may be
that the highly viscous mound of particles is slow to relax to the flatter concentration
profile predicted theoretically. This may explain the discrepancy between figures 12(e)
and 12(f ) and why the pressure gradient may not be fully developed at the end of
the pipeline.

6.2. Positively buoyant system

This section discusses the results for the suspension flow of 25% by volume of light
non-conducting particles (PMMA). The concentration profiles are presented as line
contour plots or colour contour plots, and the results are compared to those predicted
by the model presented in § 4.

Figure 13 presents the trends associated with increasing buoyancy number. Again,
reduction of the flow rate controlled the magnitude of the buoyancy number and all
the data were obtained from the sensor array at 9.8 m downstream of the inline mixer.
Like the heavy particle suspensions, a larger concentration of particles accumulated
at larger buoyancy numbers.

Again, one of the goals of this study was to compare the EIT images with the
theoretical predictions of the suspension balance model. The model predictions
qualitatively matched the experimental data, and these comparisons are presented
in figure 14. As seen in the negatively buoyant suspensions, the experimental and
theoretical results produce concentration values that are more closely matched at the
top and bottom of the pipe. The largest variations in the experimental observations
and theoretical predictions occur in the centre of the flow. These discrepancies may
be attributed to the EIT imaging method, which is less sensitive to changes in the
conductivity near the centre of the pipe and/or inadequacies in the theoretical model.

6.3. Moment analysis

To understand better the performance of the model as compared to the experimental
observations, a moment analysis is used to compare the results quantitatively. Two
moments, or integrals of the concentration fields, are defined to represent the vertical
and horizontal distribution of particles at the fully developed axial length.

The first moment (My) represents the vertical distribution as given by

My ≡ 1

φb

∫
A

φ(x, y)y dA. (6.1)

Here, φb is the bulk volume fraction, which is 0.25 for the light (PMMA) particle and
0.20 for the heavy (silver) particle suspension. Furthermore, the sign of this moment
represents the relative buoyancy of the particles, where a negative sign indicates heavy
particles and a positive sign indicates light particles.

The second moment (Mx2 ) represents the horizontal distribution of the particles.
This integral equation is given as

Mx2 ≡ 1

φb

∫
A

φ(x, y)x2 dA, (6.2)
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where φb is the bulk volume fraction as defined for the first moment. This equation is
a measure of the horizontal distribution around the centre of the pipe, where a small
number indicates a large accumulation near x = 0 and increasing values indicate a
spread of the particles on the horizontal axis.

Figure 15 show both moments for values of Nb (according to (1.1)) ranging from
approximately −15 to 25, where the light particle suspension (negative Nb) represents
an average volume fraction of 0.25 and the heavy (positive Nb) represent an average
volume fraction of 0.20. There is reasonable agreement of the isotropic suspension
balance model with the experimental results. As seen for the data for My , the
suspension balance model and the experimental results display the same qualitative
trend, indicating a similar distribution of the particles in the vertical direction. The
theoretical and experimental agreement becomes more similar near the higher and
lower magnitudes of buoyancy numbers. Additionally, this figure shows excellent
quantitative agreement in the horizontal distribution of particles as indicated by Mx2 ,
though this moment is rather insensitive to Nb and φ. Overall, this figure indicates
that the model matches fairly well the experimentally determined phase distribution
of particles in a pressure-driven low-Reynolds-number suspension flow.

6.4. Comparison to previous work

It appears to date that the only previous published study on the pressure-driven
flow of buoyant suspensions is that of Altobelli et al. (1991). They used NMRI
to determine the velocity and concentration profiles of heavy particles in a viscous
suspending fluid. However, most of their work was performed at small buoyancy
numbers, and they were not able to resolve areas near the surface of the pipe. Their
data are displayed for a buoyancy number of approximately 4.0 and a volume fraction
of 0.23. Unfortunately, they only presented a qualitative scale for their results. Since
they did not present a quantitative scale values were assigned to the qualitative scale
using the reported value of maximum packing (0.58 ± 0.02) as a basis for the scale.

Figure 16(a) is the Altobelli et al. data using the assumptions described above.
Figure 16(b) presents our experimental findings for a system of heavy conducting
particles. The buoyancy number for our experiment was 4.9 with a bulk volume
fraction of 0.20. Figure 16(c) represents the light non-conducting particles at a
buoyancy number of −4.9 and a volume fraction of 0.25. This data was rotated 180◦,
for the purpose of comparison.

The first apparent difference in the NMRI studies and our experiments occurs at the
boundary of the pipe. Altobelli et al. (1991) had difficulty resolving the concentrations
at the boundary, which results in near maximum packing at these points (indicated by
a white zone in figure 16a). They attributed this problem to either the resolution of the
NMRI or the filtering algorithm they applied to the data. Regardless, similarities are
apparent. First, all images resolve a depletion zone near the top, but their data reveal
a much larger depletion zone with very little variation in the particle concentration
compared to the study here. There is also a large zone in the centre of the pipe
with concentrations between 0.16 and 0.24 for the NMRI data and both suspensions
imaged in this study.

According to the dimensions (particle and pipe) reported by Altobelli et al., the
imaged suspensions should have travelled a sufficient distance to be a fully developed

Figure 13. Contour plots of the concentration profile at 9.8m downstream of the inline mixer
for φb = 0.25 and for all buoyancy numbers with the measured average concentration shown
parenthetically. (a) Nb = −2.4 (0.253); (b) −4.9 (0.250); (c) −10.1 (0.256).



26 J. T. Norman, H. V. Nayak and R. T. Bonnecaze

1.0

0.5

0y

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

(a)
1.0

0.5

0

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

0.36

0.33

0.30

0.27

0.24

0.21

0.18

0.15

0.12

0.09

0.06

(b)

1.0

0.5

0y

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

(c)
1.0

0.5

0

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

0.39

0.36

0.33

0.30

0.27

0.24

0.21

0.18

0.15

0.12

0.09

0.06

(d )

1.0

0.5

0y

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

(e)

0.44

0.40

0.36

0.32

0.28

0.24

0.20

0.16

0.12

0.08

0.04

1.0

0.5

0

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

( f )

φ

φ

φ

Figure 14. Comparison of theoretical (left-hand column) and experimental results (right-hand
column) for the light particle suspensions. The experimentally obtained concentration profile
are at 9.8m downstream of the inline mixer for φb = 0.25. The theoretical results were obtained
using the local isotropic suspension balance model. The data are presented for all experimental
buoyancy numbers. (a) Nb = −2.4, theoretical; (b) −2.4, experimental; (c) −4.9, theoretical;
(d) −4.9, experimental; (e) −10.1, theoretical; (f ) −10.1, experimental.



Migration of buoyant particles 27

1.25

1.00

0.75

0.50

0.25

0

–0.25

–0.50

–0.75

–1.00

–1.25
–15 –10 –5 0 5

Nb

10 15 20 25

M
om

en
t

exp theory
My

Mx2

Figure 15. Moment comparison of the experimental results and the predictions of the isotropic
suspension balance equations. The solid symbols represent the experimental results and the
open symbols correspond to the suspension balance model. The circular symbols represent
the moment My defined in equation (6.1) and the square symbols represent the moment Mx2

as defined in (6.2). Furthermore, the negative Nb values are normalized by a bulk fraction of
0.25 and the positive Nb values are normalized by a bulk volume fraction of 0.20, and these
buoyancy numbers correspond to values shown in table 2.

flow (see § 7). While the concentration profile for the heavy particle suspension
depicted in figure 16(b) may not be fully developed, the suspension of light particles
in figure 16(c) appears to be fully developed. Therefore, the concentration profile
from the light particle suspension in this study and the Altobelli et al. concentration
field should be nearly identical (similar particle size and volume fraction of 0.23 for
the Altobelli et al. study and 0.25 for the system investigated here). However, the EIT
method resolved a high-concentration zone near the bottom of the pipe, which the
Altobelli et al. method could not resolve, and the EIT images clearly reveal the trends
expected for a buoyancy-dominated flow. Also, the curvature of the concentration
field obtained from EIT imaging is similar to the predictions of the model, contrary
to that of the NMRI.

7. Estimate of length to fully developed flow
One of the contributions of Nott & Brady (1994) was the scaling estimate of the

length required to achieve a fully developed concentration profile for migration of
neutrally buoyant particles; this parameter proved that earlier experimental results
were not measured at sufficient lengths to ensure the flow was fully developed.
However, the experimental studies presented here suggest that buoyant suspensions
approach the fully developed state much earlier than predicted by Nott & Brady. This
is not completely unexpected, because the scaling analysis of Nott & Brady was based
on a diffusion mechanism. In buoyant systems, however, the important mechanism
for determining the fully developed length scale is gravitational settling. Schaflinger,
Acrivos & Stibi (1995) presented a scaling argument that considers gravitational
settling in the prediction of the fully developed length scale. Here, a similar scaling
argument is presented.
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By considering the time required for neutrally buoyant particles to migrate a
distance of the order of the pipe radius and relating this steady-state time to the
distance travelled for a mean flow velocity, the following expression was obtained by
Nott & Brady (1994) for the length for fully developed flow in a pipe:

Ld ∼ 3

32

R

d(φ)

(
R

a

)2

, (7.1)

where d(φ) is a non-dimensional diffusion coefficient, R is the radius of the pipe, a is
the radius of the particle and the subscript d indicates a diffusion dominated length
scale.

As seen in these experiments, for systems dominated by buoyancy forces, (7.1)
significantly overpredicts the fully developed length. For instance, the predicted
length for fully developed flow for a suspension of the heavy particles used here
is 1180 m (estimating the coefficients as 3/32d(φ) ≈ O(1)); however, the experimental
observations place this length closer to 14 m. Since this study focuses on buoyant
systems in pipe flow, an alternative estimate of the fully developed length is presented
here. Consider a pipe with a radius R. The time for the particles to traverse a distance
of the order of the radius is given as

tss ∼ R

Usf (φ)
, (7.2)

where, Us is the Stokes settling velocity and f (φ) is the hindered settling function.
The distance the particle travels horizontally can be related to the average suspension
velocity by

Lb ∼ Utss . (7.3)

The subscript b denotes a buoyancy-dominated fully developed length and U is the
average velocity of the suspension. Using this expression and the Stokes settling
velocity results in the following estimate for the fully developed length:

Lb ∼ 9ηRU

2a2(ρp − ρf )g

1

f (φ)
. (7.4)

Using the definition of the buoyancy parameter in (1.1), the simplified estimate of the
length for the fully developed flow of a buoyancy-dominated suspension is

Lb ∼ R3

a2Nb

1

f (φ)
. (7.5)

To emphasize the importance of using the correct scaling argument to determine
the fully developed length, consider a viscous suspension flow in a pipe. The buoyancy
dominated length scale is reduced by some fraction of Nb, so when Nb is greater than
one (in many applications, Nb is often of the order of 10 or higher), the expression for
the buoyancy-dominated fully developed length predicts significantly smaller lengths
than predicted by the diffusion-dominated expression. For example, consider the heavy
particle suspension at the largest buoyancy number presented in this study (Nb = 18.6).

Figure 16. (a) Particle concentration profiles measured by Altobelli et al. (1991) for a sus-
pension of heavy particles with φb = 0.23 and a buoyancy number of 4.0; (b) the concentration
profile reported in this paper for the heavy particles with φb = 0.20 and a buoyancy number
of 4.9; (c) the concentration profile reported in this paper for the light particles with φb = 0.25
and an experimental buoyancy number of −4.9.
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The predicted length for a fully developed flow (Ld) is approximately 1200 m;
however, the buoyancy-dominated length (Lb) is much shorter at approximately 159 m.
Previous investigations have shown that the diffusion-dominated scaling predicts fully
developed lengths longer than actually needed (Hampton et al. 1997). Butler et al.
(1999) suggest that the actual value should be 0.12 Ld . Using this argument, the
diffusion-dominated scaling predicts a length of 144 m, which is still much farther than
observed experimentally. However, if the same coefficient is applied to the buoyancy-
dominated expression, the predicted length is about 19 m, which is much closer to the
experimentally observed value.

8. Conclusions
A non-invasive imaging technique was used here to study particle migration when

buoyancy effects are important. The concentration profiles obtained using EIT reveal
that buoyant suspension become fully developed earlier than neutrally buoyant
systems, and a scaling argument similar to that introduced by Schaflinger et al. (1995)
was presented as an estimate of the fully developed length of buoyant suspensions at
low Reynolds numbers. Furthermore, it has been shown that the developing pressure
gradient provides valuable insight into the progression towards the fully developed
state. This study has shown that the pressure gradient drops initially and then increases
to a larger fully developed value.

The experimental phase distributions were compared to the predictions of the model
introduced by Nott & Brady (1994). This version of the suspension balance model
produced results that qualitatively, and in some cases, quantitatively, matched the ex-
perimental data. The experimental results for the lowest-magnitude buoyancy number
for the heavy particle suspensions did not match the predictions of the suspension
balance model as closely; however, this is not completely unexpected, since some of
the imaged suspensions may not have travelled a sufficient distance to become fully
developed as described in § 7. Additionally, the theoretical predictions of the suspen-
sion balance model were compared with the experimental data using moments. This
method revealed qualitative agreement of the theory with the experimental results.

In summary, EIT images have provided valuable insight into the behaviour of
low-Reynolds-number suspension flows when buoyancy effects are important, and a
comparison of these experimental observations with theoretical predictions has shown
that the isotropic suspension balance model closely predicts the phase distribution
qualitatively and in some cases quantitatively.

Appendix A. EIT forward modelling
The mathematical statement in (2.1) requires the solution of the forward problem

(determination of the potentials at the electrodes, given a conductivity field). Ohm’s
law defines the forward problem in a low- frequency domain as

∇ · σ (x)∇V = 0. (A 1)

For this problem, the boundary conditions are defined as follows:

n · σ (x)∇V =




q/A source electrode,
−q/A sink electrode,
0 elsewhere,

(A 2)
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Figure 17. Cylindrical domain for Fourier expansion of the forward problem
(pseudo-three-dimensional formulation).

where, n is the inward normal, V is the potential, q is the injection current and
A is the area of the electrode. Ideally, the full three-dimensional problem would
be solved; however, this problem is computationally expensive and the measurement
technique used here does not produce enough data to perform a full three-dimensional
analysis. Fortunately, the concentration profile of the suspension evolves slowly and so
following Ider et al. (1990) the forward problem is assumed pseudo- three-dimensional
by accounting for the axial invariance of the conductivity field. Consider the system
shown in figure 17.

Following the methods of Ider et al., the potential can be expanded in the Fourier
series:

V (x, y, z) =

∞∑
k=0

Vk(x, y) cos

(
kπ

L
z

)
, (A 3)

where, k is the index and L is the length of propagation of the potential in the axial
direction. Using this expansion and since the conductivity varies only in the cross-
sectional plane, the following pseudo-three-dimensional expression for the forward
problem is given by

∇2d · σ ∇2dVk − σ

(
kπ

L

)2

Vk =0, (A 4)

and the boundary condition is given in terms of the kth term in the cosine expansion:

σ
∂

∂n
Vk = Jk, (A 5)

where ∇2d represents the two-dimensional gradient operator, Jk is the kth expansion
of the current density (q/A) and n represents the inward normal. Clearly, these
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expressions reveal that the solution of the forward problem is dependent on
the number of expansions and the half-length of the cylindrical domain. In our
experiments, the optimal half-length was determined as five times the radius of the
pipe, and 11 (k = 0 to 10) expansions were used.

Appendix B. EIT inverse modelling
The calculated potentials from (A 4) and (A 5) are used in the minimization problem

given in (2.1). To find σ that minimizes the objective function, the derivative of (2.1)
is set to zero. Expanding this derivative in a Taylor series yields the expression

d(2χ2)

dσ n+1

=
d(2χ2)T

dσ n

+
(σ n+1 − σ n)

T

2
· d2(2χ2)

dσ n
2

+ O
[
(σ n+1 − σ n)

2
]
. (B 1)

The Taylor expansion is retained only up to O(σ n+1 − σ n), and the derivates in (B 1)
are expanded in terms of (2.1) below:

d(2χ2)

dσ n

= −JT
n · WT

d · Wd · (dobs − dcalc)n + λWT
m · Wm(σ − σ r )n, (B 2)

d2(2χ2)

dσ n
2

= −GT · WT
d · Wd · (dobs − dcalc)n + JT

n · WT
d · Wd · Jn + λWT

m · Wm.s (B 3)

Equation (B 3) is the Hessian of the objective function given in (2.1). Further, the
matrix J is the Jacobian, which is defined as

J=
d

dσ
(dcalc). (B 4)

The parameter G is the derivative of the Jacobian matrix, and is defined as

G =
d2

dσ 2
(dcalc). (B 5)

The updated conductivity field using (B 1) and the above definitions is given by

(σ n+1 − σ n) ∼=
[
JT

n · WT
d · Wd · Jn − GT

n · WT
d · Wd · (dobs − dcalc)n + λWT

m · Wm

]−1

[
JT

n · WT
d · Wd · (dobs − dcalc)n − λWT

m · Wm · (σ − σ r )n
]
. (B 6)

The formation of the Jacobian and Hessian are computationally expensive,
accounting for 75% or more of the inversion time. One option, which was used
in this study, is to use a simplification such as a Gauss–Newton method (Torres-
Verdı́n & Habashy 1993). This method ignores the second-order derivative in (B 3).
Since the Jacobian results in the majority of the computational expense, the Jacobian
was calculated using only the first expansion of the Fourier series (k = 0), while the
forward problem was expanded to the full k = 10 expansions. When the error ceased
to reduce, the inversion algorithm was implemented with the full expansion of the
Jacobian (k = 10). This reduced the computational time by approximately one-tenth
of the full inversion scheme.

It is important to note that Wm can be chosen to specify many different constraints.
For example, if Wm ≡ I, the solution will have the smallest deviation from the reference
conductivity, and if Wm is chosen as the difference matrix (a representation of the first
derivative), the solution will be the smoothest with respect to the reference conductivity
(both of these criteria were used in this analysis). Furthermore, the regularization
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parameter λ must be optimised within all iterations, which leads to a series of itera-
tions within each conductivity update (in this analysis, λ is chosen as a fraction of
the trace of the matrix JT

n · WT
d · Wd · Jn and is reduced, followed by a line search, until

the smallest square error is found at that iteration).

Appendix C. Data processing
The potential measurements obtained from the Mk.2 data acquisition system are

conditioned before any numerical processing is attempted. These conditioning factors
are used to account for errors in the potential measurements resulting from geometric
imperfections and electrode contact impedance. To determine the correction factors, a
solution with the same conductivity of the suspending fluid is used to obtain potential
measurements for each sensor array. The measured potentials are compared to the
calculated potentials obtained from the forward problem (performed at the average
current injection and same frequency as the experiments) discussed in Appendix A.
These measurements are used to determine the conditioning factors, which are applied
to all of the experimental data before any numerical processing is attempted. These
correction factors are defined as follows:

ωi

(
Vc

Vm

)
i

, (C 1)

where (Vc)i is the ith calculated potential from the forward algorithm, and (Vm)i is
the ith potential measured with the Mk.2.

Each measurement is repeated several times, the results are averaged and the
standard deviation is determined. If the potential varies more than one standard
deviation then it is eliminated. Additionally, if a sign change occurs in any of the
averaged data, that potential measurement is discarded. These two criteria are easily
automated. Unfortunately, the Mk.2 potential measurements are very sensitive to small
changes. If, for instance, a contaminant comes into contact with the electrode, an
‘irregular’ potential measurement may occur with minimal deviation in the averaged
data. Determining these irregularities is difficult to automate and requires careful
analysis of the data. Once an item of data is determined invalid using the above
criteria, it must be eliminated. In general, the data-weighting matrix described in § 2
is a diagonal matrix consisting of the inverse of the square of the corresponding
potential measurement. By simply changing the corresponding weight to a value of
zero, the desired data points can be discarded.

Once the above conditioning is completed, the potential data was processed with
the inverse algorithm. The corresponding suspending fluid conductivity was used
as the initial guess. The inverse algorithm allows the reference conductivity to be
either a single value applied to each component of the conductivity or individual
values for each conductivity zone. This presents a method for incorporating a priori
information into the inverse problem. Initially, the reference conductivity was set to
a single value: the average of the initial guess (which for the first iteration is just
the suspending fluid conductivity). The average reference value was updated at each
iteration. Furthermore, the solution with the smallest deviation from the reference
conductivity was enforced by setting Wm = I. The algorithm was stopped when either
the error ceased to reduce or some predetermined limit was obtained (for instance,
the error is usually limited to 0.10 to prevent noise from being inverted). Successive
inversions were performed using the previous solution as a basis for the a priori
information (the reference conductivity vector was assigned the values of the solution
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from the previous inversion). Additionally, the model-weighting matrix was defined to
determine the effects of changing from the smallest (Wm = I) and smoothest (difference
matrix) regularization requirement. This procedure was continued until no significant
change in the error was obtained or the error limit was reached. On average, this
procedure resulted in a total of four inversions (limited to 20 iterations) for each set
of potential measurements.
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